Valence Stabilization of Fe(II) Ions during Extended Gamma Irradiation of Their Aqueous Acidic Solutions Containing Phenol, Acetone, 4-Ethylpyridine or Hydrazine Hydrate
نویسندگان
چکیده
Valence stabilization of polyvalent ions in acidic solutions during gamma irradiation is an important issue in nuclear aqueous chemical technology. Radiolysis and self irradiation problems encountered during chemical reprocessing of nuclear fuel or during chemical separation of transuranium elements or fission products are extremely important. Consequently studies on valence stabilization of polyvalent ions in strong gamma irradiation fields are very useful. In our previous publications, the valence stabilization of Fe(II) ions in acidic solutions during continuous gamma irradiation was achieved by using an inorganic compound; such as sodium sulfite, or some organic additives such as aliphatic alcohols, aldehyds or acids prior to irradiation. It was found that the efficiency of valence stabilization depends on the amount and chemical structure of the added compounds. In the present work, valence stabilization of divalent iron during gamma irradiation was studied in presence of some organic additives, belonging to some other classes of organic compounds such as Phenol (aromatic alcohol), Acetone (aliphatic ketone), 4-Aminopyridine (heterocyclic amino compound) and Hydrazine hydrate (aliphatic amino compound) to complement our previous studies. The results showed that valence stabilization of Fe(II) in presence of these compounds depends also on the amount and chemical structure of the additive used. Some interaction mechanisms have been proposed. Corresponding author. M. F. Barakat, M. M. Abdel Hamid
منابع مشابه
Valence stabilization of polyvalent ions during gamma irradiation of their aqueous solutions by sacrificial protection. III-Valence stabilization of Fe(II) ions by organic additives
Valence stabilization of polyvalent ions in gamma irradiated aqueous solutions is sometimes necessary in some chemical operations. In previous publications, valence stabilization of some polyvalent ions in solution upon gamma irradiation was achieved by using inorganic additives capable of interacting with the oxidizing or reducing species formed during water radiolysis. The results showed that...
متن کاملValence Stabilization of Polyvalent Uranium Ions in Presence of Some Organic Additives during Extended Gamma Irradiation of Their Aqueous Acidic Solutions
In gamma irradiated aqueous acidic uranium solutions, tetravalent uranium ions are easily oxidized while U(VI) ions remain unchanged. In general, valence change of polyvalent metallic ions during chemical reprocessing of spent nuclear fuel solutions can lead to undesirable effects under the influence of the existing gamma radiations. Consequently, studies on valence stabilization of Uranium ion...
متن کاملSynthesized some copolymer derivative of poly (Styrene –alternative- Maleic Anhydride) (SMA) for removal Cobalt (II) ions from aqueous solutions and determination residual cobalt (II) ions by using spectrophotometric method
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene-alt-maleic anhydride) with Melamine was synthesized. This modified resin was further reacted with 1,2-diaminoethan in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale f...
متن کاملElimination of Copper (II) Ions from Aqueous Solution by the using of gamma alumina nanoparticles
heavy metals, as gamma alumina nanoparticles pollutants, in water resources. Therefore, the purpose of this paper was to evaluate the removal of copper (II) ions from aqueous solutions using gamma alumina nanoparticles as a adsorbent. Batch adsorption studies carried out to study various parameters included contact time, initial concentration of copper (II) ions, pH, and gamma alumina nanoparti...
متن کاملPreparation and Characterization of Poly(ethyl hydrazide) Grafted Oil Palm Empty Fruit Bunch for Removal of Ni(II) Ion in Aqueous Environment
Poly(ethyl hydrazide) grafted oil palm empty fruit bunch (peh-g-opefb) fiber has been successfully prepared by heating poly(methylacrylate)-g-opefb at 60 °C for 4 h in a solution of hydrazine hydrate in ethanol. The chelating ability of peh-g-opefb was evaluated based on removal of Ni(II) ions in aqueous solution. Adsorption of Ni(II) by peh-g-opefb was characterized based on effect of pH, isot...
متن کامل